
Basic Primer on the details of modelling calculations 

At a high level, we have modelled our system as a series of layers and applied the Fresnel equations 

to calculate reflectivity and transmissivity as a function of angle or frequency. First, all of the 

layers have to be defined and assigned a permittivity function whether modelled or experimental. 

Modelled permittivity functions may be fixed values (frequency invariant), Drude-modelled (for 

conductors), Lorentz-modelled (for dielectrics), or others. For composite layers containing several 

interspersed materials, effective medium approximations (EMA, or equivalently, effective 

medium theory, EMT) may be used. Once permittivities are obtained for each layer, we use a 

matrix method developed by Ohta and Hatsuo1 to apply the Fresnel equations and Snell’s law to 

the system of layered materials and calculate the reflectivity and transmissivity. 

Basic optical properties 
Relative permittivity, ϵ, and complex refractive index, η, are two different ways of encoding the 

same information. One can convert between the two by: 𝜂2 = 𝜇𝜖, and for the cases considered in 

this work, the magnetic permeability, 𝜇, equals unity. 

The permittivity can be separated into real and imaginary components: 

𝜂 = 𝑛 + 𝑖𝜅         (1) 
𝜖 = 𝜂2 = (𝑛 + 𝑖𝜅)2 = 𝑛2 + 2𝑖𝑛𝜅 − 𝜅2      (2) 
𝜖1 = 𝑛2 − 𝜅2         (3) 
𝜖2 = 2𝑛𝜅          (4) 

where 𝜖1and 𝜖2are the real and imaginary parts of the permittivity, respectively.  

The various forms of expressing the wavelength/frequency of the electromagnetic radiation are 

explicitly given in Equation 5 
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where 𝑐 is the speed of light in a vacuum. 

Lorentz model 
The absorbing organic molecule was modelled as a Lorentz oscillator:  
 

𝜖𝑙𝑜𝑟𝑒𝑛𝑡𝑧 = 𝜖∞ +
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where 𝜖∞ is the relative permittivity off-resonance (i.e. at very high frequency), 𝜔𝑝 is the angular 

plasma frequency, 𝜔𝑟 is the angular resonant frequency, 𝜔 is the angular frequency of the electric 

field driving the oscillator (i.e. angular frequency of the incident IR radiation), and 𝛾 is the 

damping factor of the molecular resonance.  
 



Drude model 
The permittivity values of metals and conductive metal oxides can be modelled using the Drude 

model. In this work, the Drude model was used as the function describing the permittivity of IZO 

films.  Electrons in metals are unbound, and thus there is no restoring force causing them to 

oscillate at some resonant frequency. Therefore, the Drude model is given by the Lorentz model 

for the special case of 𝜔𝑟 = 0: 
 

𝜖𝐷𝑟𝑢𝑑𝑒 = 𝜖∞ −
𝜔𝑝
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 The plasma frequency, 𝜔𝑝, is given by:  

 

𝜔𝑝 = (
𝑁𝑒2

𝜖0𝑚∗
)
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          (8) 

 
where N is the free carrier concentration (density of conduction electrons), e is the elementary 

charge, 𝜖0 is the permittivity of free space, and 𝑚∗ is the effective electron mass. The effective 

mass is a calculated value of an electron’s apparent mass based on how the electron would be 

affected by forces applied to it. 

 

Bruggeman Effective Medium Approximation 
The permittivity function of the structured metal surface is not accurately described by the 

permittivity of the bulk metal. Various Effective Medium Approximations (EMAs) have been 

developed to model the permittivity of a composite structured layer. Examples include the 

Bruggeman, Maxwell-Garnett and Hunderi EMA models.2  

In this work, we have followed Osawa3 and used the Bruggeman EMA, which treats the surface 

as a collection of metal prolate spheroids in a host medium which fills the spaces between the 

metal particles. The particles may be coated by a thin uniform layer of some organic molecule. 

Thus, the Bruggeman EMA effectively combines the permittivity values of the three constituents 

(metal, organic molecule, host medium) to obtain an effective permittivity of the composite layer. 

This approximation is valid when the microstructural elements of the layer (in this case, the prolate 

spheroids) are much smaller than the wavelengths of IR light.  

It is not entirely clear how the metal spheroids are arranged within the layer in Osawa’s work, so 

this work assumes that the major semi-axes of the spheroids are parallel to the surface, and thus 

the layer has a thickness equal to the diameter of the minor semi-axis. Additionally, we assume 

that within this limitation, the prolate spheroids may adopt any possible rotation.  

Granqvist2 defines the Bruggeman EMA as: 

𝜖𝐵𝑅 =
𝜖ℎ(1−𝐹+

1

3
𝐹𝛼)

1−𝐹−
2

3
𝐹𝛼

         (9)  



where 𝜖ℎ is the permittivity of the host medium, F is the fractional volume of the layer occupied 

by metal particles, and 𝛼 is the polarizability factor of the particles. 

The polarizability, 𝛼, is a function of the volume ratio of the uncoated to coated particles (Q), the 

depolarization factors of the core and coated prolate particles (𝐿1, 𝐿2), and also the permittivity of 

the metal (𝜖𝑚) and the dielectric coating (𝜖𝑑): 

𝛼 =
(𝜖𝑑−𝜖𝐵𝑅)[𝜖𝑚𝐿1+𝜖𝑑(1−𝐿1)]+𝑄(𝜖𝑚−𝜖𝑑)[𝜖𝑑(1−𝐿1)+𝜖𝐵𝑅𝐿2]

[𝜖𝑑𝐿2+𝜖𝐵𝑅(1−𝐿1)][𝜖𝑚𝐿1+𝜖𝑑(1−𝐿1)]+𝑄(𝜖𝑚−𝜖𝑑)(𝜖𝑑−𝜖𝐵𝑅)𝐿2(1−𝐿2)
   (10) 

Notice that the Bruggeman permittivity function is a parameter of the polarizability function. 

Solving eqn (9) for 𝛼 and then setting the result equal to eqn (10) gives: 

3(𝜖ℎ−𝐹𝜖ℎ+𝐹𝜖𝐵𝑅−𝜖𝐵𝑅)

−𝐹(2𝜖𝐵𝑅+𝜖ℎ)
=  

(𝜖𝑑−𝜖𝐵𝑅)[𝜖𝑚𝐿1+𝜖𝑑(1−𝐿1)]+𝑄(𝜖𝑚−𝜖𝑑)[𝜖𝑑(1−𝐿2)+𝜖𝐵𝑅𝐿2]

[𝜖𝑑𝐿2+𝜖𝐵𝑅(1−𝐿2)][𝜖𝑚𝐿1+𝜖𝑑(1−𝐿1)]+𝑄(𝜖𝑚−𝜖𝑑)(𝜖𝑑−𝜖𝐵𝑅)𝐿2(1−𝐿2)
.  (11) 

It is possible to solve this equation for the Bruggeman permittivity, 𝜖𝐵𝑅, but the expression is very 

lengthy, and is not given here. 

To calculate an absorbance spectrum, the Bruggeman permittivity must be also calculated in the 

absence of the dielectric coating (analyte film.) To calculate the Bruggeman permittivity of a film 

without dielectric coating, we replaced 𝜖𝑑 with 𝜖ℎ. 

Prolate ellipsoids are a class of spheroids with dimensions a, b, c where b = c and a > b, (i.e. where 

a is the major semi-axis, and b, c are the minor semi-axes). The one-dimensional depolarization 

factors for major and minor semi-axes of prolate spheroids are given by equations 4.2 and 4.3 in 

Stoner4 (also equations 2.10 and 2.11 in Osborn5): 
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𝐿𝑚𝑖𝑛𝑜𝑟 =
1

2
(1 − 𝐿𝑚𝑎𝑗𝑜𝑟)       (13) 

where 𝑚 is the ratio of the long semi-axis to the short semi axis. The depolarization factors given 

above are only valid for prolate spheroids, the particles may be best modelled by some other 

geometric solid defined by its own unique depolarization factors but this was not explored in this 

work. Given our assumption that the particles can adopt any rotation about the axis normal to the 

surface, we assume a random distribution of rotational orientations, so the depolarization factor of 

an average particle is taken to be the arithmetic mean of the depolarization factors along the major 

and minor semi-axes: 

𝐿𝑒𝑓𝑓 =
𝐿𝑚𝑎𝑗𝑜𝑟−𝐿𝑚𝑖𝑛𝑜𝑟

2
        (14) 



Note that this assumption means that the "effective depolarization factor of the collective particles" 

is independent of direction of the electric field, that is to say the same for s- and p-polarized light.  

Ohta’s matrix method 
Ohta and Hatsuo1 described a method to calculate reflectivity and transmissivity of layered systems 

using propagation matrices and the Fresnel equations for reflection and transmission coefficients. 

For each interface in the layered system of interest, a matrix is defined: 

𝐶𝑗 = (
𝑒−𝑖𝛿𝑗−1 𝑟𝑗𝑒−𝑖𝛿𝑗−1

𝑟𝑗𝑒𝑖𝛿𝑗−1 𝑒𝑖𝛿𝑗−1
)       (15) 

 

where r is the Fresnel reflection coefficient and δj-1 is the phase shift of the wave after passing 

through the boundary between the j-th and the (j+1)-th layer with respect to the phase of the wave 

at the boundary between the (j-1)-th and the j-th layer: 
 

𝛿𝑗−1 = 2𝜋𝜈𝜂𝑗−1cos𝜃𝑗−1ℎ𝑗−1       (16) 

 

The subscripts refer to the layer, with j-1 referring to the layer on the near side of the interface, 

with respect to the direction of propagation. 
 
The product of all Cj matrices gives a 2 by 2 matrix with elements: 
 

∏ 𝐶𝑗
𝑛
𝑗=1 = (

𝑐11 𝑐12

𝑐21 𝑐22
)        (17) 

 

And the overall reflection and transmission coefficients across the entire layered system are given 

by: 
 

𝑟 =
𝑐21

𝑐11
          (18) 

 

𝑡 =
1

𝑐11
∏ 𝑡𝑗

𝑛
𝑗=1          (19) 

 

The Fresnel transmission coefficients for s- and p-polarized light at the j-th interface, tj, are given 

by6: 

 

𝑡𝑗𝑠 =
2𝜉𝑗−1

𝜉𝑗 + 𝜉𝑗−1
         (20) 

 

𝑡𝑗𝑝 =
2𝜂𝑗𝜂𝑗−1𝜉𝑗−1

𝜉𝑗−1 + 𝜉𝑗
        (21) 

 

where: 

 

𝜉𝑗 = |𝜂𝑗𝑐𝑜𝑠𝜃𝑗|        (22) 

 



Note that the expression for tjs in Ohta1 is incorrect, as is the expression for tjp in Hansen.6 

Expressing the reflection coefficients in terms of 𝜉𝑗 (i.e. forcing the real and imaginary components 

of the product 𝜂𝑗𝑐𝑜𝑠𝜃𝑗  to both be positive) gives the correct root, causing the evanescent wave to 

decay exponentially as a function of distance from the terminal interface, which is the correct 

behaviour. If 𝜉𝑗 is not in quadrant I of the complex plane, the evanescent wave will increase 

exponentially. 

 

The observable quantities are reflectance (R) and transmittance (T) which are the square moduli 

of their respective coefficients. However, the cross-sectional area of the beam changes upon 

refraction, so transmissivity is multiplied by a factor accounting for this change in beam size: 

 

𝑅 = |𝑟|2         (23) 

 

𝑇𝑠 = 𝑅𝑒 (
𝜂𝑚+1 cos 𝜃𝑚+1

𝜂0𝑐𝑜𝑠𝜃0
) |𝑡𝑠|2       (24) 

 

𝑇𝑝 = 𝑅𝑒 (
𝜂𝑚+1

∗ cos 𝜃𝑚+1

𝜂0
∗ 𝑐𝑜𝑠𝜃0

) |𝑡𝑝|
2

       (25) 

 


